Last updated: 2019-11-26

Checks: 6 1

Knit directory: simpamm/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20180517) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

The following chunks had caches available:
  • unnamed-chunk-4

To ensure reproducibility of the results, delete the cache directory confidence-intervals_cache and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE when running wflow_build() or wflow_publish().

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/confidence-intervals_cache/
    Ignored:    analysis/pem_vs_pam_cache/
    Ignored:    analysis/time-varying-cumulative-effect_cache/

Untracked files:
    Untracked:  analysis/analysis.bib
    Untracked:  analysis/fit-vs-truth-ped.gif
    Untracked:  analysis/math_definitions.tex
    Untracked:  analysis/time-varying-cumulative-effect.Rmd
    Untracked:  output/sim-conf-int-registry/
    Untracked:  output/sim-lag-lead-registry/
    Untracked:  output/sim-pem-vs-pam-registry/
    Untracked:  output/tve-cumulative-registry/
    Untracked:  sandbox/
    Untracked:  simpamm.Rproj

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 9c4d35c Andreas Bender 2019-11-25 Add math
html 0969c5d Andreas Bender 2019-11-25 Build site.
html 8dc2ecc Andreas Bender 2019-11-25 Build site.
html f266198 Andreas Bender 2019-11-25 Build site.
Rmd a900481 Andreas Bender 2019-11-25 wflow_publish(“analysis/confidence-intervals.Rmd”)
html 45c6520 Andreas Bender 2019-11-25 Build site.
Rmd 4ea7082 Andreas Bender 2019-11-25 Add sim study on confidence intervals

library(dplyr)
library(ggplot2)
theme_set(theme_bw())
library(patchwork)
library(survival)
library(mgcv)
library(pammtools)
library(batchtools)
knitr::opts_chunk$set(autodep = TRUE)
# bibliography
library(RefManageR)
BibOptions(check.entries = FALSE, hyperlink=FALSE, style = "markdown",
  max.names = 1)
bib <- ReadBib("analysis/analysis.bib", check = FALSE)

\[ \newcommand{\ra}{\rightarrow} \newcommand{\bs}[1]{\boldsymbol{#1}} \newcommand{\tn}[1]{\textnormal{#1}} \newcommand{\mbf}[1]{\mathbf{#1}} \newcommand{\nn}{\nonumber} \newcommand{\ub}{\underbrace} \newcommand{\tbf}[1]{\textbf{#1}} \newcommand{\E}{\mathbb{E}} \newcommand{\R}{\mathbb{R}} \newcommand{\Prob}{\mathbb{P}} \newcommand{\bfx}{\mathbf{x}} \newcommand{\bfX}{\mathbf{X}} \newcommand{\bfV}{\mathbf{V}} \newcommand{\bfB}{\mathbf{B}} \newcommand{\bfy}{\mathbf{y}} \newcommand{\bff}{\mathbf{f}} \newcommand{\bsbeta}{\boldsymbol{\beta}} \newcommand{\bsgamma}{\boldsymbol{\gamma}} \newcommand{\bslambda}{\boldsymbol{\lambda}} \newcommand{\bskappa}{\boldsymbol{\kappa}} \newcommand{\bsnu}{\boldsymbol{\nu}} \newcommand{\bfS}{\mathbf{S}} \newcommand{\bfz}{\mathbf{z}} \newcommand{\bfZ}{\mathbf{Z}} \newcommand{\drm}{\mathrm{d}} \newcommand{\tz}{\ensuremath{t_z}} \newcommand{\tlag}{t_{\text{lag}}} \newcommand{\tlead}{t_{\text{lead}}} \newcommand{\mcZ}{\mathcal{Z}} \newcommand{\tw}{\mathcal{T}_e(j)} \newcommand{\Tw}[1]{\mathcal{T}^{#1}} \newcommand{\tilt}{\tilde{t}} \newcommand{\Zi}{\ensuremath{\mathcal{Z}_i(t)}} \newcommand{\CI}{\ensuremath{C1}} \newcommand{\CII}{\ensuremath{C2}} \newcommand{\CIII}{\ensuremath{C3}} \newcommand{\gCII}{\ensuremath{g_{_{\CII}}}} \newcommand{\gCIII}{\ensuremath{g_{_{\CIII}}}} \newcommand{\gammaEst}{\hat{\gamma}_g^r} \newcommand{\hatEj}{\hat{e}_{j, r}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\rpexp}{\operatorname{rpexp}} \newcommand{\Var}{\operatorname{Var}}\]

Motivation

Here we consider three different ways to calculate confidence intervals for hazard rates estimated by PAMMs and derivatives thereof, i.e., the cumulative hazard and survival probability. The three methods compared here are

  1. Delta method
  2. Direct transformation
  3. Simulation

Theory

PAMMs model the (log-)hazard for which standard errors can be obtained straight forward from the theory of GAMMs (for details see Wood (2017)). Since \(\hat{\bsgamma} \sim N(\bsgamma, \bfV_{\bsgamma})\), it follows that linear transformations of \(\hat{\bsgamma}\) also follow a normal distribution. For example, the (approximate) distribution of the log-hazard for covariate specification \(\bfx\) (row vector) is given by

\[\label{eq:linear-trafo-nv} \bfx'\hat{\bsgamma} \sim N(\bfx'\bsgamma, \bfx' \bfV_{\bsgamma}\bfx). \]

However, often we are also interested in quantities derived from the (log)-hazard, most notably the cumulative hazard \(\Lambda(t|\bfx)\) and the survival probability \(S(t|\bfx)\) that are non-linear transformations of \(\bsgamma\). Three approaches to derive the standard errors or confidence intervals for such transformations are common in practice:

  • Delta method
  • Simulation based on the posterior distribution of the coefficients
  • Direct transformation of the linear predictor

In the following, the three approaches are briefly described in more detail. Results of a simulation study with respect to the coverage of the CI obtained by the different approaches, are presented in section “Evaluation”.

Delta Method

Let \(\hat{\bsgamma}\) the \(P\times 1\) vector of coefficient estimates and \(h:\R^P \ra \R^m\). Here \(m\) is the number of rows in \(\bfX\). The Delta rule states, that the transformation \(h(\hat{\bsgamma})\) has normal distribution \[\begin{equation}\label{eq:delta-rule} h(\hat{\bsgamma}) \sim N\left(h(\bsgamma), \bfV_{h(\bsgamma)} :=\nabla h(\bsgamma)(\bfV_{\bsgamma}) \nabla h(\bsgamma)'\right), \end{equation}\]

where \(\nabla h(\bsgamma)\) is the Jacobi matrix.

Below, the variances \(\bfV_{h(\bsgamma)}\) are derived for the transformations

  • \(h(\bsgamma) := \Lambda(t; \bfX, \bsgamma)\) and

  • \(h(\bsgamma) := S(t; \bfX, \bsgamma) = \exp(-\Lambda(t|\bfX, \bsgamma))\)

In the following, let \(t \equiv \kappa_J\) (the end point of the last interval) without loss of generality and \(\bfX\) the \(J\times P\) design matrix, such that the log-hazard in intervals \(j=1,\ldots,J\) is given by \(\bs{\eta} = \bfx_1'\bsgamma,\ldots, \bfx_J'\bsgamma = \eta_1,\ldots \eta_J\). Let further \(\mbf{e}^{\mbf{v}}:=(\exp(v_1), \ldots,\exp(v_J))'\) and \(\mbf{E}^{\mbf{v}}\) the respective diagonal matrix with elements \(\mbf{E}^{\mbf{v}}_{j,j}=\exp(v_j), j=1,\ldots,J\) and \(\mbf{E}^{\mbf{v}}_{j,j'}=0\ \forall j'\neq j\).

Cumulative hazard

In the context of PAMMs, the cumulative hazard at time \(t\) is given by \(\Lambda(t|\bfX, \bsgamma) = \sum_{j=1}^J \Delta_j \exp(\eta_j)\), with \(\Delta_j = \kappa_{j}-\kappa_{j-1}\), the length of the \(j\)-th interval. In matrix notation this can be written as \(\bs{\Delta} \mbf{e}^{\bs{\eta}}\), where \(\bs{\Delta}\) is the lower triangular matrix \[\begin{equation}\label{eq:q-weights} \boldsymbol{\Delta} = \begin{pmatrix} \Delta_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ \Delta_1 & \cdots & \Delta_J \end{pmatrix} \end{equation}\]

These are known constants, thus it suffices to derive the Jacobi matrix for \(\mbf{e}^{\bs{\eta}}\):

\[\begin{align} \nabla \mbf{e}^{\bs{\eta}} &= \begin{pmatrix} \partial \frac{\exp(\bfx_1'\bsgamma)}{\partial \gamma_1} & \cdots &\frac{\exp(\bfx_1'\bsgamma)}{\partial \gamma_{P}}\\ \vdots &\ddots & \vdots\\ \partial \frac{\exp(\bfx_J'\bsgamma)}{\partial \gamma_1} & \cdots &\frac{\exp(\bfx_J'\bsgamma)}{\partial \gamma_{P}} \end{pmatrix}\label{eq:jacobi-hazard2}\\ & = \begin{pmatrix} \exp(\eta_1)\cdot x_{1,1} & \cdots & \exp(\eta_1)\cdot x_{1,P}\\ \vdots & \ddots & \vdots \\ \exp(\eta_J)\cdot x_{J,1} & \cdots & \exp(\eta_J)\cdot x_{J,P}\\ \end{pmatrix} \\ & = \mbf{E}^{\bs{\eta}}\bfX\label{eq:jacobi-hazard} \end{align}\]

Thus the variance of the cumulative hazard is given by

\[\begin{align} \Var(\Lambda(t|\bfX, \bsgamma)) & = (\bs{\Delta} \mbf{E}^{\bs{\eta}}\bfX) \bfV_{\bsgamma} (\bs{\Delta}\mbf{E}^{\bs{\eta}}\bfX)'\label{eq:V-delta-cumu}\\ & = (\bs{\Delta} \mbf{E}^{\bs{\eta}}) (\bfX \bfV_{\bsgamma}\bfX') (\bs{\Delta}\mbf{E}^{\bs{\eta}})'\label{eq:V-delta-cumu2} \end{align}\]

This result was also stated by Carstensen (2005) in a slightly less general form. When \(t \neq \kappa_J\), \(\bfX\) is a \(j(t) \times P\) matrix and \(\bs{\Delta}\) is a \(j(t)\times j(t)\) matrix with elements \(\Delta_1,\ldots, \Delta_{j(t)}\), where \(j(t) = j:t\in (\kappa_{j-1},\kappa_j]\) and \(\Delta_{j(t)}=t-\kappa_{j(t)-1}\).

Survival probability

Results for the survivor function can be obtained similar to the cumulative hazard by defining \(h(\bsgamma) := S(t|\bfX, \bsgamma)=\exp(-\Lambda(t|\bfX,\bsgamma))\). The Jacobi matrix is then given by

\[\begin{align} \nabla h(\bsgamma) &= \begin{pmatrix} \frac{\partial e^{-\Delta_1e^{\eta_1}}}{\partial \gamma_1} & \cdots & \frac{\partial e^{-\Delta_1e^{\eta_1}}}{\partial \gamma_p}\\ \vdots & \ddots & \vdots\\ \frac{\partial e^{-\sum_{j=1}^J \Delta_je^{\eta_j}}}{\partial \gamma_1} & \cdots &\frac{\partial \ e^{-\sum_{j=1}^J \Delta_je^{\eta_j}}}{\partial \gamma_P} \end{pmatrix}\nn\\ &= \begin{pmatrix} e^{-\Delta_1e^{\eta_1}}\cdot(-\Delta_1e^{\eta_1})\cdot x_{1,1} & \cdots & e^{-\Delta_1e^{\eta_1}}\cdot(-\Delta_1e^{\eta_1})\cdot x_{1,P}\\ \vdots & \ddots & \vdots\\ e^{-\sum_{j=1}^J \Delta_je^{\eta_j}}\cdot(-\sum_{j=1}^{J}\Delta_j e^{\eta_j}\cdot x_{j,1}) & \cdots & e^{-\sum_{j=1}^J \Delta_je^{\eta_j}}\cdot(-\sum_{j=1}^{J}\Delta_j e^{\eta_j}\cdot x_{j,P}) \end{pmatrix}\\ & = -\mbf{E}^{-\bs{\Delta}\mbf{e}^{\bs{\eta}}}\bs{\Delta}\mbf{E}^{\bs{\eta}}\bfX\label{eq:jacobi-surv} \end{align} \]

The variance of the survival probability is given below:

\[ \begin{align} \Var(S(t|\bfX, \bsgamma)) & = (-\mbf{E}^{-\bs{\Delta}\mbf{e}^{\bs{\eta}}}\bs{\Delta}\mbf{E}^{\bs{\eta}}\bfX)\bfV_{\bsgamma} (-\mbf{E}^{-\bs{\Delta}\mbf{e}^{\bs{\eta}}}\bs{\Delta}\mbf{E}^{\bs{\eta}}\bfX)'\label{eq:V-delta-surv}\\ & = (-\mbf{E}^{-\bs{\Delta}\mbf{e}^{\bs{\eta}}}\bs{\Delta}\mbf{E}^{\bs{\eta}})(\bfX\bfV_{\bsgamma}\bfX') (-\mbf{E}^{-\bs{\Delta}\mbf{e}^{\bs{\eta}}}\bs{\Delta}\mbf{E}^{\bs{\eta}})'\label{eq:V-delta-surv3}\\ & = \mbf{E}^{-\bs{\Delta}\mbf{e}^{\bs{\eta}}} \Var(\Lambda(t|\bfX,\bsgamma))(\mbf{E}^{-\bs{\Delta}\mbf{e}^{\bs{\eta}}})'.\label{eq:V-delta-surv2} \end{align} \]

The second formulation can be used when the variance for \(\bfX\bsgamma\) is already available. The last expression is usefull when the variance of the cumulative hazard was obtained in a previous calculation.

Simulation based inference

When the estimation process of a GAMM is viewed from an empirical Bayes point of view, which, from a computational perspective, is equivalent to the REML based approach, it can be shown (e.g., Fahrmeir, Kneib, Lang, and Marx (2013, Ch. 7.6.1), Wood (2017, Ch. 4.2.4, 5.8, 6.10)), that the posterior distribution of regression parameters \(\bsgamma\) is given by

\[ \begin{equation}\label{eq:posterior-gamma} \bsgamma|\bfy,\bsnu \sim N(\hat{\bsgamma}, \bfV_{\bsgamma}) \end{equation} \]

with \(\hat{\bsgamma}\) and \(\bfV_{\bsgamma} = (\bfX'\tbf{W}\bfX + \tbf{S}_{\nu})^{-1}\) as before. This result can be used to compute Bayesian credible intervals for any quantity of interest that is a function of regression coefficients \(\bsgamma\). In the context of PAMMs, this approach was described by Argyropoulos and Unruh (2015). For example, 95% CIs for \(\hat{S}(t|\bfx_j)\) are obtained by drawing samples \(\bsgamma_r, r=1,\ldots,R\) from the posterior, calculating \(\hat{S}_r(t,\bfx_j)\). The lower and upper boarders of the CI is then obtained as the \(2.5\%\) and \(97.5\%\) quantiles of the \(R\) survival probabilities, respectively.

Direct transformation

One simple approach, which is often used in practice to calculating confidence intervals (CI) for monotone transformations of the linear predictor, is to apply the transformation to the lower and upper bound of the CI for the linear predictor. Thus, when \(\hat{\eta}_j=\bfx_j'\hat{\bsgamma}\) is the log-hazard in the \(j\)-th interval with CI

\[ [\hat{l}_j=\hat{\eta}_j-\zeta_{1-\alpha/2}\hat{\sigma}_{\hat{\eta}_j},\hat{u}_j = \hat{\eta}_j+\zeta_{1-\alpha/2}\hat{\sigma}_{\hat{\eta}_j}] \], with \(\zeta_{1-\alpha/2}\) the \(1-\alpha/2\) quantile of the normal distribution, the CI for \(h(\hat{\eta}_j)\) is obtained by \([h(\hat{l}_j); h(\hat{u}_j)]\).

Empirical Results

Data Simulation

We simulate data with log-hazard rate \[ \log(\lambda(t|x)) = -3.5 + f(8,2) \cdot 6 - 0.5\cdot x_1 + \sqrt{x_2}, \] where \(f(8,2)\) is the gamma density function with respective parameters.

The below wrapper creates a data set with \(n = 500\) survival times based on above hazard. The simulation of survival times is performed using function pammtools::sim_pexp.

sim_wrapper <- function(data, job, n = 500, time_grid = seq(0, 10, by = 0.05)) {

  # create data set with covariates
  df <- tibble::tibble(x1 = runif(n, -3, 3), x2 = runif(n, 0, 6))
  # baseline hazard
  f0 <- function(t) {dgamma(t, 8, 2) * 6}

  ndf <- sim_pexp(
    formula = ~ -3.5 + f0(t) -0.5*x1 + sqrt(x2),
    data = df, cut = time_grid)

  ndf
}

Estimation

The below wrapper - transforms the simulated survival data into the PED format - fits the PAMM - returns a data frame that contains the coverage for each method - two types of splines are considered for the estimation of the baseline hazard, thinplate splines (tp)and P-Splines (ps)

Expand to see function source code

ci_wrapper <- function(
  data,
  job,
  instance,
  bs      = "ps",
  k       = 10,
  ci_type = "default") {

  # instance <- sim_wrapper()
  ped <- as_ped(
    data    = instance,
    formula = Surv(time, status) ~ x1 + x2,
    id      = "id")

  form <- paste0("ped_status ~ s(tend, bs='", bs, "', k=", k, ") + s(x1) + s(x2)")

  mod <- gam(
    formula = as.formula(form),
    data    = ped,
    family  = poisson(),
    offset  = offset,
    method  = "REML")

  f0 <- function(t) {dgamma(t, 8, 2) * 6}

  # create new data set
  nd <- make_newdata(ped, tend = unique(tend), x1 = c(0), x2 = c(3)) %>%
    mutate(
      true_hazard = exp(-3.5 + f0(tend) -0.5 * x1 + sqrt(x2)),
      true_cumu = cumsum(intlen * true_hazard),
      true_surv = exp(-true_cumu))
  # add hazard, cumulative hazard, survival probability with confidence intervals
  # using the 3 different methods
  nd_default <- nd  %>%
    add_hazard(mod, se_mult = qnorm(0.975), ci_type = "default") %>%
    add_cumu_hazard(mod, se_mult = qnorm(0.975), ci_type = "default") %>%
    add_surv_prob(mod, se_mult = qnorm(0.975), ci_type = "default") %>%
    mutate(
      hazard = (true_hazard >= ci_lower) & (true_hazard <= ci_upper),
      cumu = (true_cumu >= cumu_lower) & (true_cumu <= cumu_upper),
      surv =  (true_surv >= surv_lower) & (true_surv <= surv_upper)) %>%
    select(hazard, cumu, surv) %>%
    summarize_all(mean) %>%
    mutate(method = "direct")
  nd_delta <- nd %>%
    add_hazard(mod, se_mult = qnorm(0.975), ci_type = "delta", overwrite = TRUE) %>%
    add_cumu_hazard(mod, se_mult = qnorm(0.975), ci_type = "delta", overwrite = TRUE) %>%
    add_surv_prob(mod, se_mult = qnorm(0.975), ci_type = "delta", overwrite = TRUE) %>%
    mutate(
      hazard = (true_hazard >= ci_lower) & (true_hazard <= ci_upper),
      cumu = (true_cumu >= cumu_lower) & (true_cumu <= cumu_upper),
      surv =  (true_surv >= surv_lower) & (true_surv <= surv_upper)) %>%
    select(hazard, cumu, surv) %>%
    summarize_all(mean) %>%
    mutate(method = "delta")
  nd_sim <- nd %>%
    add_hazard(mod, se_mult = qnorm(0.975), ci_type = "sim", nsim = 500, overwrite = TRUE) %>%
    add_cumu_hazard(mod, se_mult = qnorm(0.975), ci_type = "sim", nsim = 500, overwrite = TRUE) %>%
    add_surv_prob(mod, se_mult = qnorm(0.975), ci_type = "sim", nsim = 500, overwrite = TRUE) %>%
    mutate(
      hazard = (true_hazard >= ci_lower) & (true_hazard <= ci_upper),
      cumu = (true_cumu >= cumu_lower) & (true_cumu <= cumu_upper),
      surv =  (true_surv >= surv_lower) & (true_surv <= surv_upper)) %>%
    select(hazard, cumu, surv) %>%
    summarize_all(mean) %>%
    mutate(method = "simulation")

    rbind(nd_default, nd_delta, nd_sim)

}

Evaluation

We simulate 100 data sets and obtain respective estimates using package batchtools:

Expand to see batchtools code

if (!checkmate::test_directory_exists("output/sim-conf-int-registry")) {
  reg <- makeExperimentRegistry(
    "output/sim-conf-int-registry",
    packages = c("mgcv", "dplyr", "tidyr", "pammtools"),
    seed     = 20052018)
  reg <- loadRegistry("output/sim-conf-int-registry", writeable = TRUE)
  # reg$cluster.functions = makeClusterFunctionsInteractive()
  addProblem(name   = "ci", fun = sim_wrapper)
  addAlgorithm(name = "ci", fun = ci_wrapper)

  algo_df <- data.frame(bs = c("tp", "ps"), stringsAsFactors = FALSE)

  addExperiments(algo.design  = list(ci = algo_df), repls = 300)

  submitJobs(findNotDone())
  # waitForJobs()

}

Below the RMSE and coverage are calculated for the different methods to estimate the confidence intervals

reg     <- loadRegistry("output/sim-conf-int-registry", writeable = TRUE)
ids_res <- findExperiments(prob.name = "ci", algo.name = "ci")
pars    <- unwrap(getJobPars()) %>% as_tibble()
res     <- reduceResultsDataTable(ids=findDone(ids_res)) %>%
  as_tibble() %>%
  tidyr::unnest(cols = c(result)) %>%
  left_join(pars)

Coverage table for the hazard, cumulative hazard and survival probability

# RMSE and coverage hazard
res %>%
  group_by(bs, method) %>%
  summarize(
    "coverage hazard" = mean(hazard),
    "coverage cumulative hazard" = mean(cumu),
    "coverage survival probability" = mean(surv)) %>%
  ungroup() %>%
  mutate_if(is.numeric, ~round(., 3)) %>%
  rename("basis" = "bs") %>%
  knitr::kable()
basis method coverage hazard coverage cumulative hazard coverage survival probability
ps delta 0.911 0.904 0.907
ps direct 0.914 0.965 0.965
ps simulation 0.891 0.904 0.907
tp delta 0.936 0.925 0.933
tp direct 0.938 0.978 0.978
tp simulation 0.918 0.933 0.933

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] tidyr_1.0.0          RefManageR_1.2.12    batchtools_0.9.11   
 [4] data.table_1.12.6    pammtools_0.1.14     mgcv_1.8-31         
 [7] nlme_3.1-142         survival_3.1-7       patchwork_0.0.1.9000
[10] ggplot2_3.2.1        dplyr_0.8.3         

loaded via a namespace (and not attached):
 [1] progress_1.2.2    tidyselect_0.2.5  xfun_0.11         purrr_0.3.3      
 [5] splines_3.6.1     lattice_0.20-38   colorspace_1.4-1  vctrs_0.2.0      
 [9] expm_0.999-4      htmltools_0.4.0   yaml_2.2.0        rlang_0.4.2      
[13] later_1.0.0       pillar_1.4.2      glue_1.3.1        withr_2.1.2      
[17] rappdirs_0.3.1    plyr_1.8.4        lifecycle_0.1.0   stringr_1.4.0    
[21] munsell_0.5.0     gtable_0.3.0      workflowr_1.5.0   mvtnorm_1.0-11   
[25] evaluate_0.14     knitr_1.26        httpuv_1.5.2      highr_0.8        
[29] Rcpp_1.0.3        promises_1.1.0    scales_1.1.0      backports_1.1.5  
[33] checkmate_1.9.4   jsonlite_1.6      fs_1.3.1          brew_1.0-6       
[37] hms_0.5.2         digest_0.6.23     stringi_1.4.3     msm_1.6.7        
[41] bibtex_0.4.2      grid_3.6.1        rprojroot_1.3-2   tools_3.6.1      
[45] magrittr_1.5      base64url_1.4     lazyeval_0.2.2    tibble_2.1.3     
[49] Formula_1.2-3     crayon_1.3.4      whisker_0.4       pkgconfig_2.0.3  
[53] zeallot_0.1.0     Matrix_1.2-17     xml2_1.2.2        prettyunits_1.0.2
[57] lubridate_1.7.4   httr_1.4.1        assertthat_0.2.1  rmarkdown_1.17   
[61] R6_2.4.1          git2r_0.26.1      compiler_3.6.1