# load latest emnid data
temp <- scrape_wahlrecht() %>% slice(1) %>% collapse_parties()
temp %>% unnest("survey")
## # A tibble: 7 x 7
##   date       start      end        respondents party  percent votes
##   <date>     <date>     <date>           <dbl> <chr>    <dbl> <dbl>
## 1 2013-09-29 2013-09-24 2013-09-26        1382 cdu         43 594. 
## 2 2013-09-29 2013-09-24 2013-09-26        1382 spd         26 359. 
## 3 2013-09-29 2013-09-24 2013-09-26        1382 greens       7  96.7
## 4 2013-09-29 2013-09-24 2013-09-26        1382 fdp          3  41.5
## 5 2013-09-29 2013-09-24 2013-09-26        1382 left         9 124. 
## 6 2013-09-29 2013-09-24 2013-09-26        1382 afd          6  82.9
## 7 2013-09-29 2013-09-24 2013-09-26        1382 others       6  82.9
# draw 10k samples from posterior
set.seed(29072017)
draws <- map(temp$survey, draw_from_posterior, nsim=1e4, correction=0.01) %>%
    flatten_df()
draws_long <- gather(draws, party, percent, cdu:others) %>%
        group_by(party) %>%
        mutate(sim = row_number()) %>% ungroup()
ggplot(draws_long, aes(x=party, y=percent)) +
    geom_boxplot() +
    geom_hline(yintercept = 0.05, lty=2, col=2)

## chains
ggplot(draws_long, aes(x=sim, y=percent)) +
    geom_path() +
    geom_hline(yintercept = 0.05, lty=2, col=2) +
    facet_wrap(~party, nrow=2)

draws_long %>%
    group_by(party) %>%
    summarize(entryprob = sum(percent >= 0.05)/n())
## # A tibble: 7 x 2
##   party  entryprob
##   <chr>      <dbl>
## 1 afd       0.899 
## 2 cdu       1     
## 3 fdp       0.0027
## 4 greens    0.994 
## 5 left      1     
## 6 others    0.893 
## 7 spd       1